Nominated Area Water Balance & Storage Calculations - Wick Trench Design (EPA compliant)

SILO Data Drill Average monthly

Lavers Hill (Wyelangta) Secondary Effluent - Wick Trench 5 or more bedrooms Site Address:

INPUT DATA DO NOT MODIFY CELLS IN BLUE Design Wastewater Flow 1,080 O Daily DLR 8.0 Nominated Land Application Area 440.0 Crop Factor С 0.5-0.7 Retained Rainfall RR 0.85 Void Space Ratio 0.45 Rainfall Data Wyelangta Lavers Hill (Wyelangta) **Evaporation Data**

L/day Estimated daily load from 5 bedroom residential property, with standard water fixtures and town water mm/day Enter DLR from table at right based on Appendix A Table 9 EPA Code of Practice (2013) for limiting soil horizon m sq Used for iterative purposes to determine storage requirements based on nominated trench/bed bottom area unitless Estimates evapotranspiration as a fraction of ET₀; varies with season and crop type (from EPA 168) Proportion of rainfall that remains onsite and infiltrates; function of slope/cover, allowing for any runoff unitless Proportion of trench that is available for storage (assumes arch drain) BoM 70th percentile monthly

Bed Water available (days) = 90

Soil Category (AS1547:2012)	DLR			
Gravels & Sands (1)	NS			
Sandy Loams (2) Loams (3) High/Mod Clay Loams (4a)	NS			
Weak Clay Loams (4b)	20			
Massive Clay Loams (4)	10			
Strong Light Clays (5a)	12			
Moderate Light Clays (5b)	10			
Weak Light Clays (5c)	8			
Medium to Heavy Clays (6)	5			

Parameter	Symbol	Formula	Units	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Total
Days in month	D	/	days	31	28	31	30	31	30	31	31	30	31	30	31	31	28	31	30	31	30	365
Rainfall	R	\	mm/month	107.6	108.1	125.3	191.7	231.8	231.1	266.1	274.4	220.9	207.3	172.4	141.8	107.6	108.1	125.3	191.7	231.8	231.1	2,278.
Potential Evapotranspiration	ET_0	\	mm/month	121.0	99.7	82.9	51.2	31.7	21.5	24.9	36.4	52.4	76.5	92.8	111.6	121.0	99.7	82.9	51.2	31.7	21.5	802.6
Crop Factor	С			0.70	0.70	0.70	0.60	0.50	0.45	0.40	0.45	0.55	0.65	0.70	0.70	0.70	0.70	0.70	0.60	0.50	0.45	
OUTPUTS (LOSSES)																						
Evapotranspiration	ET	ET ₀ xC	mm/month	84.7	69.8	58.0	30.7	15.9	9.7	9.9	16.4	28.8	49.7	65.0	78.1	84.7	69.8	58.0	30.7	15.9	9.7	516.7
Percolation	В	(DLR)xD	mm/month	248.0	224.0	248.0	240.0	248.0	240.0	248.0	248.0	240.0	248.0	240.0	248.0	248.0	224.0	248.0	240.0	248.0	240.0	2,920.0
Outputs		ET+B	mm/month	332.7	293.8	306.0	270.7	263.9	249.7	257.9	264.4	268.8	297.7	305.0	326.1	332.7	293.8	306.0	270.7	263.9	249.7	3,436.7
INPUTS (GAINS)																						
Retained Rainfall	Re	R*RR	mm/month	91.5	91.9	106.5	162.9	197.0	196.4	226.2	233.2	187.8	176.2	146.5	120.5	91.5	91.9	106.5	162.9	197.0	196.4	1,936.7
Applied Effluent	W	(QxD)/L	mm/month	76.1	68.7	76.1	73.6	76.1	73.6	76.1	76.1	73.6	76.1	73.6	76.1	76.1	68.7	76.1	73.6	76.1	73.6	895.9
Inputs		Re+W	mm/month	167.6	160.6	182.6	236.6	273.1	270.1	302.3	309.3	261.4	252.3	220.2	196.6	167.6	160.6	182.6	236.6	273.1	270.1	2,832.6
STORAGE CALCULATION (Δ)																						
Storage remaining from previous month			mm/month	0.0	0.0	0.0	0.0	0.0	20.6	65.9	164.4	264.3	247.8	146.9	0.0	0.0	0.0	0.0	0.0	0.0	20.6	
Storage for the month	S	((Re+W)-(ET+B))/V	mm/month	-367.0	-295.9	-274.3	-75.9	20.6	45.3	98.5	99.9	-16.5	-101.0	-188.4	-287.8	-367.0	-295.9	-274.3	-75.9	20.6	45.3	-1,342.
Cumulative Storage	M		mm	0.0	0.0	0.0	0.0	20.6	65.9	164.4	264.3	247.8	146.9	0.0	0.0	0.0	0.0	0.0	0.0	20.6	65.9	
Maximum Storage Depth for Nominated Area	N		mm	264.3																		•
Maximum Storage Vol. for Nominated Area	V	NxL	L	116,312																		
BOTTOM AREA REQUIRED FOR ZERO STORAGE m ² 138.8			149.8	167.8	300.6	501.0	608.5	1054.1	1075.8	399.7	275.5	204.5	162.8	138.8	149.8	167.8	300.6	501.0	608.5			

MINIMUM BOTTOM AREA REQUIRED FOR ZERO STORAGE:

1,076 m²

Value is based on the worst month of the year, so the balance overestimates the storage requirement for all other months. Assumes zero effluent depth (storage) in trench/bed. Model is run for 18-months to ensure trench/bed empties at least once per cycle.

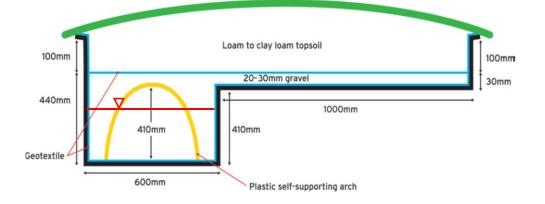
Wick trench dimensions (mm)

Trench Width = Bed Width =

600 1,000

450 150

Depth = Depth =


Recommended wick trench length (m) =

Minimum trench spacing: 1m for Soil Categories 1-3; and 1.5m for Soil Categories 4-6

No. of trenches @ (max) 20m length =

26

Total footprint with 1m spacing (m²) = Total footprint with 1.5m spacing (m²) =

